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EDITORS’ PREFACE

THE volume called Higher Mathematics, the third edition
of which was published in 1goo, contained eleven chapters by
eleven authors, each chapter being independent of the others,
but all supposing the reader to have at least a mathematical
training equivalent to that given in classical and engineering
colleges. The publication of that volume was discontinued in
1906, and the chapters have since been issued in separate
Monographs, they being generally enlarged by additional
articles or appendices which either amplify the former pres-
entation or record recent advances. This plan of publication
was arranged in order to meet the demand of teachers and
the convenience of classes, and it was also thought that it
would prove advantageous to readers in special lines of mathe-
matical literature.

It is the intention of the publishers and edltors to add other
monographs to the series from time to time, if the demand
seems to warrant it. Among the topics which are under con-
sideration are those of elliptic functions, the theory of quantics,
the group theory, the calculus of variations, and non-Euclidean
geometry; possibly also monographs on branches of astronomy,
mechanics, and mathematical physics may be included. It is
the hope of the editors that this Series of Monographs may
tend to promote mathematical study and research over a wider
field than that which the former volume has occupied.



PREFACE

THE purpose of this little book is to give the reader a con--
venient introduction to the theory of numbers, one of the most
extensive and most elegant disciplines in the whole body of.
mathematics. The arrangement of the material is as follows:
The first five chapters are devoted to the development of these
elements which are essential to any study of the subject. The
sixth and last chapter is intended to give the reader some
indication of the direction of further study with a brief account
of the nature of the material in each of the topics suggested.
The treatment throughout is made as brief as is possible con-.
sistent with clearness and is confined entirely to fundamental
matters. This is done because it is believed that in this way .
the book may best be made to serve its purpoese as an intro-
duction to the theory of numbers.

Numerous problems are supplied throughout the text.
These have been selected with great care so as to serve as excel-
lent exercises for the student’s introductory training in the
methods of number theory and to afford at the same time a
further collection of useful results. The exercises marked with
a star are more difficult than the others; they will doubtless
appeal to the best students.

Finally, I should add that this book is made up from the.
material used by me in lectures in Indiana University during
the past two years; and the selection of matter, especially of
exercises, has been based on the experience gained in this way.

R. D. CARMICHAEL.
4
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THE THEORY OF NUMBERS

CHAPTER I
ELEMENTARY PROPERTIES OF INTEGERS

§ 1. FUNDAMENTAL NOTIONS AND LAws

IN the present chapter we are concerned primarily with
certain elementary properties of the positive integers 1, 2, 3,
4, . . . . It will sometimes be convenient, when no confusion
can arise, to employ the word inieger or the word number in
the sense of positive integer.

We shall suppose that the integers are already defined,
either by the process of counting or otherwise. We assume
further that the meaning of the terms greater, less, equal, sum,
difference, product is known.

From the ideas and definitions thus assumed to be known
follow immediately the theorems:

I. The sum of any two integers is an integer.
II. The difference of any two integers is an integer.
III. The product of any two integers is an integer.

Other fundamental theorems, which we take without proof,
are embodied in the following formulas:

1v. a+b=b+a.
V. aXb=bXa.
VI. (a+d)+c=a+(+c).
VIIL (axb)Xc=aX(bXc).
VIII. aX(b+c)=aXxb+aXe.

Here a, b, ¢ denote any positive integers.
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These formulas are equivalent in order to the following
five theorems: addition is commutative; multiplication is
commutative; addition is associative; multiplication is asso-
ciative; multiplication is distributive with respect to addition.

EXERCISES

1. Prove the following relations:
1+2+3+ . .. +n=”(n—+!),

2
1+3+5+ . . . F(an—1)=2,
B4ttt =<M)’=(x+z+ R T

2

2. Find the sum of each of the following series:
42324 L.
1243245+ ... F(an—1)?,
434524 ... F(en—1)t
3. Discover and establish thelaw suggested by the equations1*=o0+1, 22=1x+3,

3*=3+6, 4*=6+10, . . .; by the equations 1=13, 3+5=23, 7+g+11=33,
13+15+17+19=4% . . ..

§ 2. DeFINTTION OF DrvismiLity. TaE Uit

DEFINITIONS. An integer a is said to be divisible by an
integer b if there exists an integer csuch that a=bc. It is clear
from this definition that ¢ is also divisible by ¢. The integers
* b and ¢ are said to be divisors or factors of a; and a is said to’
be a multiple of b or of ¢. The process of finding two integers
b and ¢ such that bc is equal to a given integer 4 is called the
process of resolving 4 into factors or of factoring a; and & is
said to be resolved into factors or to be factored.

We have the following fundamental theorems:

1. If b is a divisor of a and ¢ is a divisor of b, then c is a
divisor of a. . .

Since b is a divisor of 4 there exists an integer 8 such that
a=Dbp. Since c is a divisor of b there exists an integer y such
that b=cy. Substituting this value of b in the equation ¢ =58
we have a=cy8. But from theorem III of § 1 it follows that
48 is an integer; hence, ¢ is a divisor of @, as was to be proved.
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IL. If ¢ is a divisor of both a and b, then c is a divisor of the
sum of a and b.

From the hypothesis of the theorem it follows that integers
a and B exist such that

Adding, we have

a=ca, b=cp.

a+b=ca+cB=cla+p)=cs,

where § is an integer. Hence, ¢ is a divisor of a+b.

II1. If ¢ is a divisor of both a and b, then c is a divisor of the
difference of a ond b.

The proof is analogous to that of the preceding theorem.

DEFINITIONS. If a and b are both divisible by ¢, then ¢
is said to be a common divisor or a common factor of a and .
Every two integers have the common factor 1. The greatest
integer which divides both a arfl b is called the greatest common
divisor of @ and b. More generally, we define in a similar way
a common divisor and the greatest common divisor of n integers
a1, a2, . . . ,0q9. )

DEFINITIONS. If an integer a is a multiple of each of two
or more integers it is called a common multiple of these integers.
The product of any set of mtegers is a common multiple of the
set. The least integer which is a multiple of each of two or
more integers is called their least common multiple.

It is evident that the integer 1 is a divisor of every integer
and that it is the only integer which has this property. It is
called the unit.

DEFINITION. Two or more integers which have no common
factor except 1 are said to be prime to each other or to be rela-
tively prime.

DEFINITION. If a set of integers is such that no two of
them have a common divisor besides 1 they are said to be prime
each to each.

EXERCISES

1. Prove that »*—n is divisible by 6 for every positive integer n.

2, If the product of four comsecutive integers is increased by 1 the result
is a square number.

3. Show that 281241 has a factor different from itself and 1 when » is a
positive integer.
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§ 3. PRIME NUMBERS. THE SIEVE OF ERATOSTHENES

DEFINITION. If an integer p is different from 1 and has
no divisor except itself and 1 it is said to be a prime number
or to be a prime.

DEFINITION. An integer which has at least one divisor
other than itself and 1 is said to be a composite number or to
be composite.

All integers are thus divided into three classes:

1) The unit;

2) Prime numbers;

3) Composite numbers.

We have seen that the first class contains only a single
number. The third class evidently contains an infinitude of
numbers; for, it contains all the numbers 2?, 23, 24, . .
In the next section we shall show that the second class also
contains an infinitude of numbers. We shall now show that
every number of the third class contains one of the second
class as a factor, by proving the following theorem:

1. Every integer greater than 1 has a prime factor.

Let m be any integer which is greater than 1. We have
to show that it has a prime factor. If m is prime there is the
prime factor m itself. If m is not prime we have

m=mimsz,

where m; and m; are positive integers both of which are less than
m. If either m, or m. is prime we have thus obtained a prime
factor of m. If neither of these numbers is prime, then write

mi=m'im'2, m'1>1, m>1.

Both m'; and m’; are factors of m and each of them is less than
my. Either we have now found in m’; or m'; a prime factor
of m or the process can be continued by separating one of these
numbers into factors. Since for any given m there is evidently
only a finite number of such steps possible, it is clear that we
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must finally arrive at a prime factor of m. From this conclu-
sion the theorem follows immediately.

Eratosthenes has given a useful means of finding the prime
numbers which are less than any given integer m. It may be
described as follows: i

Every prime except 2 is odd. Hence if we write down every
odd number from 3 up to m we shall have in the list every prime
less than m except 2. Now 3 is a prime. Leave it in the list;
but beginning to count from 3 strike out every third number
in the list. Thus every number divisible by 3, except 3 itself,
is cancelled. Then begin from 5 and cancel every fifth num-
ber. Then begin from the next uncancelled number, namely
7, and strike out every seventh number. Then begin from
the next uncancelled number, namely 11, and strike out every
eleventh number. Proceed in this way up to m. The uncan-
celled numbers remaining will be the odd primes not greater
than m.

It is obvious that this process of cancellation need not be
carried altogether so far as indicated; for if p is a prime greater
than v/m, the cancellation of any p** number from p will be
merely a repetition of cancellations effected by means of another
factor smaller than p, as one may see by use of the following
theorem.

I1. An integer m is prime if it has mo prime facior equal to
or less than I, where I is the grealest integer whose square is
equal to or less than m.

Since m has no prime factor less than 7, it follows from
theorem I that it has no factor but unity less than 7. Hence,
if m is not prime it must be the product of two numbers each’
greater than I; and hence it must be equal to or greater than
(I+1)2. This contradicts the hypothesis on I; and hence
we conclude that m is prime.

EXERCISE

By means of the method of Eratosthenes determine the primes less than
200,
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§ 4. THE NUMBER oF PRIMES 1S INFINITE

1. The number of primes is infinite. ,
We shall prove this theorem by supposing that the number
of primes is not infinite and showing that this leads to a con-
tradiction. If the number of primes is not infinite there is a
greatest prime number, which we shall denote by p. Then
form the number
N=1-2:3-...-p+1.

Now by theorem I of § 3 N has a prime divisor ¢. But every
non-unit divisor of N is obviously greater than p. Hence ¢
is greater than p, in contradiction to the conclusion that p is
the greatest prime. Thus the proof of the theorem is complete-

In a similar way we may prove the following theorem:

II. Among the integers of the arithmetic progression s, 11,
17, 23, . . . , there is an infinite number of primes.

If the number of primes in this sequence is not infinice
there is a greatest prime number in the sequence; supposing
that this greatest prime number exists we shall denote it by p.
Then the number N,

N=1:2-3-. . .-p—1,

is not divisible by any number less than or equal to . This
number N, which is of the form 6n#—1, has a prime factor.
If this factor is of the form 6k—1 we have already reached a
contradiction, and our theorem is proved. If the prime is of
the form 6,41 the complementary factor is of the form 6k~ 1.
Every prime factor of 6kz--1 is greater than p. Hence we
may treat 6k2 —1 as we did 6% — 1, and with a like result. Hence
we must ultimately reach a prime factor of the form 6k3—1x;
for, otherwise, we should have 67—z expressed as a product
of prime factors all of the form 6¢41—a result which is clearly
impossible. Hence we must in any case reach a contradiction
of the hypothesis. Fhus the theorem is proved. = . -

The preceding results are special cases of the following more
general theorem:
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HI. Amang the integers of the arithmetic progression a, a+-d,
a+t2d, at+3d, . . ., there is an infinite number of primes, pro-
vided that a and d. are relatively prime.

For the special case given in theorem I we have an elemen-
tary proof; but for the general theorem the proof is difficult.
We shall not give it here.

EXERCISES

1. Prove that there is an infinite number of primes of the form 4n—1.

2. Show that an odd prime number can be represented as the difference of
two squares in one and in enly one way.

3. The expmsmnm’ n?, in which m and » are integers and 2 is & prime,
is either prime to p or is divisible by p*.

4. Prove that any prime number except 2 and 3 is of one of the forms 651,
6n—1.

§ 5. THE FunpaMENTAL THEOREM 0F EucCLID

If a and b are any two positive integers there exist integers
q and r, gSo, oSr<b, such that

a=gb+r.

If a is a multiple of b the theorem is at once verified, r being
in this case o. If a is not a multiple of b it must lie between
two consecutive multiples of ; that is, there exists a ¢ such

that
gb<a<(g+1)b.

Hence there is an integer r, 0<r<b, such that a=¢b+r. In
case b is greater than ¢ it is evident that g=o a.nd r=a. Thus
the proof of the theorem is complete. :

§ 6. DIvisiBILITY BY A PRIME NUMBER

L If p is a prime number and m is any mteger, then m either
is dwmble by p or is prime to p.

~ This theorem follows at once from the fact that the only
divisors of p are 1 and p.

L. The product of two integers each less than a given pnme
namber p is not divisible by p.
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Let a be a number which is less than p and suppose that b
is a number less than p such that @b is divisible by p, and let
b be the least number for which ab is so divisible. Evidently
there exists an integer m such that

mb<p<(m+1)b.

Then p—mb<b. Since ab is divisible by p it is clear that mab
is divisible by.p; so is ap also; and hence their difference
ap—mab, =a(p—mb), is divisible by p. That is, the product
of a by an integer less than b is divisible by p, contrary to the
assumption that b is the least integer such that ab is divisible
by p. The assumption that the theorem is not true has thus
led to a contradiction; and thus the theorem is proved.

II1. If neither of two integers is divisible by a given prime
number p their product is not divisible by p.

Let a and b be two integers neither of which is divisible
by the prime p. According to the fundamental theorem of
Euclid there exist integers m, #, a, 8 such that

. a=mp+a, o<a<p,
| b=np+8, o<B<p.
Then ab=(mp+a)(np+8) = (mnp-+a+p)p+ap.

If now we suppose ab to be divisible by p we have o divisible
by . This contradicts II, since « and 8 are less than p. Hence
ab is not divisible by .

By an application of this theorem to the continued product
of several factors, the following result is readily obtained:

IV. If no one of several integers is divisible by a given prime
p their product is not divisible by p.

§ 7. THE UNIQUE FACTORIZATION THEOREM

- 1. Every integer greater than unity can be represented in one
and in only one way as a product of prime numbers. ’

- In the first place we shall show that it is always possible
to resolve a given integer m greater than unity into prime
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factors by a finite number of operations. In the i)roof of the-
orem I, § 3, we showed how to find a prime factor p; of m by
a finite number of operations. Let us write

m=pimi.

If m, is not unity we may now find a prime factor pz of m;.
Then we may write

m=pimi=pipama.

If m; is not unity we may apply to it the same process as that
applied to m, and thus obtain a third prime factor of m. Since
mi>me>mz> . . . it is clear that after a finite number of
operations we shall arrive at a decomposition of 7 into prime
factors. Thus we shall have

m=pip2 . . . Pr

where pi, p2, . . ., pr are prime numbers. We have thus
proved the first part of our theorem, which says that the decom-
position of an integer (greater than unity) into prime factors
is always possible.

Let us now suppose that we have also a decomposition of
m into prime factors as follows:

m=qiqz . . . Qs.
Then we have
Pip2 . . pr=quq2 - . . Qs

Now p; divides the first member of this equation. Hence it
also divides the second member of the equation. But p; is
prime; and therefore by theorem IV of the preceding section
we see that p; divides some one of the factors ¢g; we suppose
that p; is a factor of g;. It must then be equal to ¢;. Hence
we have
p2p3 - . . Pr=qe2q3 . . . Qs

By the same argument we prove that ps is equal to some g,
say gz. Then we have

P3ps . . . Pr=q3qs . . . Qs
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Evidently the process may be continued until one side of the
equation is reduced to 1. The other side must also be reduced
to 1 at the same time. Hence it follows that the two decom-
positions of m are in fact identical.

This completes the proof of the theorem.

The result which we have thus demonstrated is easily the
most important theorem in the theory of integers. It can
also be stated in a different form more convenient for some
purposes:

I1. Every mom-unit positive integer m can be represemied in
one and in only one way in the form

m=P1“'p2"* A

where p1, p2, . . . , pa are different primes and a1, az, . . . ,
an are positive integers.

This comes immediately from the preceding representation
of m in the form m=p,p2 . . . pr by combining into a power
of ps all the primes which are equal to pu.

COROLLARY 1. If a and b are relatively prime integers
and c is divisible by both a and b, then c is divisible by ab.

COROLLARY 2. If a and b are each prime to ¢ then ab is
prime to c.

COROLLARY 3. If a is prime to c and ab is divisible by c,
then b is divisible by c.

§ 8. THE D1viSOrRs OF AN INTEGER -

The following theorem is an immediate corollary of the
results in the preceding section:
1. All the divisors of m,

m=Pl"1p2“! e plcfl’
are of the form
piPp® . .. b, 0SBiSan;

and every such number is a divisor of m.
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From this it is clear that every divisor of m is included once
and only once among the terms of the product

(T+p14p2+ . . F0) (e tp2+ oL ™) L.
’ (I+Pn+ﬁnz+ .« .. +?-”

when this product is expanded by multiplication. It is obvious
that the number of terms in the expansion is (a1 +1)(az+1) . . .
(ea+1). Hence we have the theorem:
I1. The number of divisors of m is (a1 +1)(az+1) . . . (aa+1)-
Again we ha.ve

+1_
D(+petpi+ . .. +po)= I}’" 1;_ i
Hence,
III. The sum of the divisors of m is
fl"'H—I.Pz"-H—I. .Pn"“—l

.

p—1 e

In a similar manner we may prove the following theorem:
IV. The sum of the hk* powers of the divisors of m is

PPt g pablantD _y

?1"—1 . .. p."—l .

EXERCISES

1. Find numbers x such that the sum of the divisors of x is a perfect square.

" 2. Show that the sum of the divisors of each of the following integers is twice

the integer itself: 6, 28, 496, 8128, 33550336. Find other integers z such that
the sum of the divisors of z is a multiple of x.

3. Prove that the sum of two odd squares cannot be a square.

4. Prove that the cube of any integer is the difference of the squares of two
integers.

5. In order that a number shall be the sum of consecutive integers, it is neces-
sary and sufficient that it shall not be a power of 2.

6. Show that there exist no integers x and y (zero excluded) such that y*=22a2,
Hence, show that there does not exist a rational fraction whose square is 2.

7. The number m=p%19,"* . . . pu™®, where the p’s are different primes and
the o’s are positive integers, may be separated into two relatively prime factors in
2*~! different ways.

8. The product of the divisors of m is 4/m* where v is the number of divisors
of m.
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§ 9. THE GREATEST CoMMON FACTOR OF TWO OR MORE
INTEGERS

Let m and n be two positive integers such that m is greater
than n. Then, according to the fundamental theorem of
Euclid, we can form the set of equations

m=qn-+ni, o<n<n,
n=qin1+nz, o<nz<n,

n1 =qonz+ns, o<nz<ny,

k-2 =Qk-1Mx-1+m, O<mp<mx-y,
Nx—1=(qxNx.

If m is a multiple of n we write #=mno, k=0, in the above equa-
tions.

DEFINITION. The process of reckoning involved in
determining the above set of equations is called the Euclidian
Algorithm.

1. The number ny to which the Euclidian algorithm leads is
the greatest common divisor of m and n.

In order to prove this theorem we have to show two things:

1) That n is a divisor of both m and #;

2) That the greatest common divisor d of m and # is a
divisor of 7. ‘

To prove the first statement we examine the above set of
equations, working from the last to the first. From the last
equation we see that n; is a divisor of nx-1. Using this result
we see that the second member of next to the last equation is
divisible by #x. Hence its first member #;-2 must be divisible
by m. Proceeding in this way step by step we show that
03 and 7,, and finally that # and m, are divisible by 7.

For the second part of the proof we employ the same set of
equations and work from the first one to the last one. Let
d be any common divisor of m and #. From the first equation
we see that d is a divisor of #;. Then from the second equation
it follows that d is a divisor of #;. Proceeding in this way we
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show finally that d is a divisor of m:. Hence any common
divisor, and in particular the greatest common divisor, of m
and # is a factor of 7.

This completes the proof of the theorem.

COROLLARY. Every common divisor of m and n is a factor
of their greatest common divisor.

II. Any number s in the above set of equations is the differ-
ence of multiples of m and n.
From the first equation we have

ni=m—qn

so that the theorem is true for s=1. We shall suppose that
the theorem is true for every subscript up to —1 and prove
it true for the subscript 7. Thus by hypothesis we have *

-2 = (0u-2m —By-onm),
-1="F(a4-1m—fs-1m).

Substituting in the equatior
M= — g1t -2
we have a result of the form
= = (casm—Ben).

From this we conclude at once to the truth of the theorem.

Since n; is the greatest common divisor of m and #, we have
as a corollary the following important theorem:

IIL. If d is the greatest common divisor of the positive integers
m and n, then there exist positive integers a and B such that

am—pBn=Zd.

If we consider the particular case in which m and # are rela-
tively prime, so that d=1, we see that there exist positive
integers a and B such that am—pgn==+1. Obviously, if m and
n have a common divisor d, greater than 1, there do not exist

*If =2 we mtst replace n;_, by n.
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integers a and g satisfying this relation; for, if so, d would be
a divisor of the first member of the equation and not of the
second. Thus we have the following theorem:

IV. A necessary and sufficient condition that m and n are
relatively prime is that there exist integers a and B such that
am—pn==1.

The theory of the greatest common divisor of three or more
numbers is based directly on that of the greatest common

divisor of two numbers; consequently it does not require to
be developed in detail.

EXERCISES

1. If d is the greatest common divisor of m and #, then m/d and n/d are rela-
tively prime.

2. If d is the greatest common divisor of m and # and k is prime to %, then
d is the greatest common divisor of km and n.

3. The number of multiples of b in the sequence a, 24, 34, . . . , ba is equal
to the greatest common divisor of a and b.

4. If the sum or the difference of two irreducible fractions is an integer, the
denominators of the fractions are equal.

5. The algebraic sum of any number of irreducible fractions, whose denomi-
nators are prime each to each, cannot be an integer.

6*. The number of divisions to be effected in finding the greatest common
divisor of two numbers by the Euclidian algorithm does not exceed five times
the number of digits in the smaller number (when this number is written in the
usual scale of 10).

§ 10. THE LEAsT CoMMON MULTIPLE oF Two orR MORE
INTEGERS

1. The common multiples of two or more numbers are the
multsples of their least common multiple.

This may be readily proved by means of the unique factori-
zation theorem. The method is obvious. We shall, however,
give another proof of this theorem.

Consider first the case of two numbers; denote them by
m and »n and their greatest common divisor by d. Then we
have

m=du, n=d,
where u and » are relatively prime integers. The common
multiples sought are multiples of m and are all comprised in the
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numbers am, =adu, where ¢ is any integer whatever. In order
that these numbers shall be multiples of # it is necessary and
sufficient that adu shall be a multiple of dv; that is, that au
shall be a multiple of »; that is, that @ shall be a multiple of
v, since p and » are relatively prime. Writing ¢=é» we have
as the multiples in question the set éduv where § is an arbitrary
integer. This proves the theorem for the case of two numbers;
for duv is evidently the least common multiple of m and n.

We shall now extend the proposition to any number of
integers m, n, p, ¢, . . . . The multiples in question must
be common multiples of 7 and # and hence of their least common
multiple g. Then the multiples must be multiples of x4 and p
and hence of their least common multiple x;. But g is evi-
dently the least common multiple of m, #, . Continuing in a
similar manner we may show that every multiple in question
is a multiple of u, the least common multlple ofm,m, p,q, ...
And evidently every such number is a multiple of each of the
numbers m, n, p, ¢, . . . .

Thus the proof of the theorem is complete.

When the two integers m and # are relatively prime their
greatest common divisor is 1 and their least common multiple
is their product. Again if p is prime to both m and # it is prime
to their product mn; and hence the least common multiple
of m, n, p is in this case mnp. Continuing in a similar manner
we have the theorem:

II. The least common multiple of several integers, prime
each to each, is equal to their product.

EXERCISES

1. In order that a common multiple of » numbers shall be the least, it is neces-
sary and sufficient that the quotients obtained by dividing it successively by the
numbers shall be relatively prime.

2. The product of # numbers is equal to the product of their least common
multiple by the greatest common divisor of their products n—1 at a time.

3. The least common multiple of # numbers is equal to any common mul-
tiple M divided by the greatest common divisor of the quotients obtained on
dividing this common multiple by each of the numbers.

4. The product of # numbers is equal to the product of their greatest common
divisor by the least common multiple of the products of the numbers taken n—1
at a time.
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§ 11. ScALES OF NOTATION

I If m and n are positive integers and n>1, then m can be
represented in lerms of m in one and in only one way in the form

h h—1
m=aon +an "+ ... +a,_n+aa,
where
ao#0, olm<n, i=0,1,2,...,h.

That such a representation of m exists is readily proved by
means of the fundamental theorem of Euclid. For we have

m=mnon-+an, oZan<n,
- o=mn—+dan-1, oSap-1<n,
n1=n2n-+ar-2, oSap-2<n,
Nn-3 =m-2n+az, oZaz<n,
-2 =mp-1n+ay, oZai<n,
My-1=4ao, o<ago<n.

If the value of 7,-; given in the last of these equations is sub-
stituted in the second last we have

Ma—2=aon+a;.
This with the preceding gives
#a-3=aon2+ain+as.

Substituting from this in the preceding and continuing the
process we have finally

h h—
m=an"+an* 4 . .. +ap_m+tan,

a representation of m in the form specified in the theorem.
To prove that this representation is unique, we shall suppose
that m has the representation

m=ben*+bin* '+ . . . +bp_m+by,
where
bo#o, o =S <m, i=o,1,2, ...,k
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and show that the two representations are identical. We
have

an"+ . . . +ar-1intan=bon*+ . .. +be-1m+bs.
Then
am’+ . . . +ar-1n—Bon*+ . . . +bi-1n) =bi—aa.

The first member is divisible by #». Hence the second is also.
But the second member is less than # in absolute value; and
hence, in order to be divisible by #, it must be zero. That is,
bi=as Dividing the equation through by # and transposing
we have

an® '+ . .. Far-an—(bon* 14 . .. tbi-om) =be-1—ar-1

It may now be seen that b;-1=aa-1. It is evident that this
process may be continued until either the a’s are all eliminated
from the equation or the bd’s are all eliminated. But it is
obvious that when one of these sets is eliminated the other is
also. Hence, k=k. Also, every a equals the b which multi-
plies the same power of # as the corresponding a. That is,
the two representations of m are identical. Hence the repre-
sentation in the theorem is unique.

From this theorem it follows as a special case that any posi-
tive integer can be represented in one and in only one way in
the scale of 10; that is, in the familiar Hindoo notation. It
can also be represented in one and in only one way in any other
scale. Thus :

120759 =1.784-0.75+1.74+2.73+0.72+3.71 +2.

Or, using a subscript to denote the scale of notation, this may
be written

(120759)10=(1012032)7.

For the case in which # (of theorem I) is equal to 2, the
only possible values for the a’s are o and 1. Hence we have
at once the following theorem:

I1. Any positive integer can be represented in one and in only
one way as a sum of different powers of 2.
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EXERCISES

" 1. Any positive integer can be represented as an aggregate of different powers
of 3, the terms in the aggregate being combined by the signs + and — appropri-
ately chosen.

2. Let m and n be two positive integers of which » is the smaller and suppose
that z'.__<_n<z‘+l. By means of the representation of m and # in the scale of
2 prove that the number of divisions to be effected in finding the greatest common
divisor of m and » by the Euclidian algorithm does not exceed 2%.

§ 12. HiGHEST POWER OF A PRIME p CONTAINED IN 7!

Let n be any positive integer and p any prime number not
greater than #». We inquire as to what is _the highest power
2" of the prime p contained in #!.

In solving this problem we shall find it convenient to employ
the notation

r
H

to denote the greatest integer o such that as=<r. Wlth this
notation it is evident that we have

A I
[%- —r"—]; ()

and more generally

R

W Vs

If now we use H{x} to denote the index of the highest power
of p contained in an integer #, it is clear that we have

H{nn=H{p-zp-sp - [2]e )

since only multiples of p contain t:e factor p. Hence

H{h!}=[§]+ﬂ{:~z . [g”
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Applying the same process to the H-function in the second
member and remembering relation (1) it is easy to see that
we have

H{n!}=[§]+H{p-2p- e [%]p}
Bflenlns 3]

Continuing the process we have finally

H{n!}=[—§]+[’#]+[§—3]+ e

the series on the right containing evidently only a finite num-
ber of terms different from zero. Thus we have the theorem:

1. The index of the highest power of a prime p contained

T BB

The theorem just obtained may be written in a different
form, more convenient for certain of its applications. Let
n be expressed in the scale of p in the form

n=aop"+a1p" '+ . . . +ar-1p+as,
where
ao#0, oSa<p, 1=0,1,2,...,h

Then evidently

[’;'] —aop i+ . . . tar-sptaa-1,

[%] =aop* ’+a1p" 7+ . . . taa-z,

. . . . . . . . . . . . . 3
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Adding these equations member by member and combining
the second members in columns as written, we have

HRENPES

_ L=

i=0 p—1I
_aop"+aip" '+ . . ta—(stat . .. +a)
p—1
_n—(s0tar+ ... ta)
p—1 '

Comparing this result with theorem I we have the following
theorem:
II. If n is represented in the scale of p in the form

n=aop"+a1p" '+ . . . +aa,
where p is prime and
ao#0, o=u<p, i=0,1,2,... A,
then the index of the highest power of p contained in n! is

n—(ao+a1+ . . . +an)
p—1 |
Note the simple form of the theorem for the case p=2;
in this case the denominator p—1 is unity.

We shall make a single application of these theorems by
proving the following theorem:

II. If n, @, B, . . . , N\ are any positive integers such that
n=a+B+ ... +N\ then

n!
alpl .. LN (4)
is an integer.

Let p be any prime factor of the denominator of the frac-
tion (4). To prove the theorem it is sufficient to show that
the index of the highest power of p contained in the numerator
is at least as great as the index of the highest power of  con-
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tained in the denominator. This index for the denominator
is the sum of the expressions

(a1 (2] 2]y .
ruriury
(B4 [8]4[8]
1T E BT (8)
IANT ., TMN), ]
_?J+.P2_+-P3.+"'

The corresponding index for the numerator is
n n n
R ©

But, since n=a+/§+ . « . +A, it is evident that

11Tl o)

From this and the expressions in (B) and (C) it follows that
the index of the highest power of any prime p in the numerator
of (A4) is equal to or greater than the index of the highest power
of p contained in its denominator. The theorem now follows

at once. _
COROLLARY. The product of n consecutive integers is divisible

bynl.
EXERCISES

1. Show that the highest power of 2 contained in 1000! is 29%; in 1goo!is 21893,
Show that the highest power of 7 contained in 10000! is 7146,

2. Find the highest power of 72 contained in 1000!

3. Show that 1000! ends with 249 zeros.

4. Show that there is no number n such that 37 is the highest power of 3 con-
tained in nl.

5. Find the smallest number # such that the highest power of 5 contained
in n!is 531, What other numbers bave the same property?

6. If n=rs, r and s being positive integers, show that n! is divisible by (r')'
by (s); by the least. common multiple of (r!)* and (s!)".

7. If n=a+B+pg+rs, where a, B, 9, ¢, r, s, are positive integers, then n! is

divisible b;
Ve aBi(g)?(sh)".
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8, When # and # are two relatively prime positive integers the quotient

=(m-l--»—x)l
minl

Q
as an integer,

o*. If m and n are positive integers, then each of the quotients

- (mn)! _ (2m)!(2n)!
nl(m)® " minlm+n)!

Q

is an integer. Generalize to % integers m, n, p, . .

10%. If n=a+B+pg+rs where @, B, p, ¢, 7, s are positive integers, then »!
is divisible by :
alBlr! pl (@hP(s)".
11*. Show that
(rst)!

HisHEH®

is an integer (r, s, ¢ being positive integers). Generalize to the case of » integers
7,5, LU, .

§ 13. REMARKS CONCERNING PRIME NUMBERS

We have seen that the number of primes is infinite. But
the integers which have actually been identified as prime are
finite in number. Moreover, the question as to whether a large
number, as for instance 2257—1, is prime is in general very
difficult to answer. Among the large primes actually identified
as such are the following:

26l—1, 275.54y, 289 127,

No analytical expression for the representation of prime num-
bers has yet been discovered. Fermat believed, though he con-
fessed that he was unable to prove, that he had found such an
analytical expression in

22" 41,

Euler showed the error of this opinion by finding that 641 is a

factor of this number for the case when n=3.

The subject of prime numbers is in general one of exceeding
difficulty. In fact it is an easy matter to propose problems
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about prime numbers which no one has been able to solve.
Some of the simplest of these are the following:

1. Is there an infinite number of pairs of primes differing
by 2?

2. Is every even number (other than 2) the sum of two
primes or the sum of a prime and the unit?

3. Is every even number the difference of two primes or
the difference of 1 and a prime number?

4. To find a prime number greater than a given prime.

5. To find the prime number which follows a given prime.

6. To find the number of primes not greater than a given
number.

- 7. To compute directly the st prime number, when # is

given.



CHAPTER II

ON THE INDICATOR OF AN INTEGER

§ 14. DEFINITION. INDICATOR OF A PRIME POWER

DEFINITION. If m is any given positive integer the num-
ber of positive integers not greater than m and prime to it is
called the indicator of m.. It is usually denoted by ¢(m), and
is sometimes called Euler’s ¢-function of m. More rarely,
it has been given the name of totient of m.

As examples we have

#(1)=1, ¢(2)=1, ¢(3)=2, ¢(4)=2.
If p is a prime number it is obvious that
¢(p)=p—1;

for each of the integers 1, 2, 3, . . . , p—1 is prime to .
Instead of taking m=p let us assume that m=p®, where
a is a positive integer, and seek the value of ¢(p*). Obviously,

every number of the set 1, 2, 3, ..., p* either is divisible

by p or is prime to p* The number of integers in the set
divisible by p is p*~1. Hence p*—p=~! of them are prime
to p. Hence ¢(p*) =p=—p*~1. Therefore

If p is any prime number and o is any positive integer, then

. I
%) =p*\1—--).
¢ ) p( P)
§ 15. THE INDICATOR OF A PrODUCT

L If p and v are any two relatively prime positive integers,

then
o(wv) = ¢() 6(»)-
30
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In order to prove this theorem let us write all the integers
up to wv in a rectangular array as follows:

I 2 LI k... ul
pt1 pt2 bT3 ... ptk ... 2
2ut1 2ut2 2p+3 ... 2tk ... 3ut(A)

(v—Du+1 p—1)u+2 (v—I)p+3 oo =Dp+h ...

If a number 4 in the first line of this array has a factor in
common with x then every number in the same column with
k has a factor in common with x. On the other hand if % is
prime to u so is every number in the column with % at the top.
But the number of integers in the first row prime to u is ¢(u).
Hence the number of columns containing integers prime to u
is .¢(s) and every integer in these columns is prime to .

Let us now consider what numbers in one of these columns

are prime to »; for instance, the column with % at the top.
We wish to determine how many integers of the set

h, u+h, 2u+h, ..., (v—1)ut+k
are prime to ». Write -
su+h= g+,

where s ranges over the numbers s=o, 1, 2, . .., »—1 and
o=r<v. Clearly su+h is or is not prime to » according as
7, is or is not prime to ». Our problem is then reduced to that
of determining how many of the quantities 7, are prime to ».

First let us notice that all the numbers 7, are different;
for, if 7,=7 then from

suth=qo+r, uth=gy+r,

we have by subtraction that (s—#)u is divisible by ». But
p is prime to » and s and # are each less than ». Hence (s—#)x
can be a multiple of » only by being zero; that is, s must equal ¢.
Hence no two of the remainders 7, can be equal.

Now the remainders 7, are v in number, are all zero or posi-
tive, each is less than », and they are all distinct. Hence they



32 . THEORY OF NUMBERS

are in some order the numbers o, 1, 2, . . . , »—1. The num-
ber of integers in this set prime to » is evidently ¢(»). .

Hence it follows that in any column of the array (4) in which
the numbers are prime to u there are just ¢(v) numbers which
are prime to ». That is, in this column there are just ¢(v)
numbers which are prime to wv. But there are ¢(u) such
columns. Hence the number of integers in the array (4)
prime to wv is ¢(u)$(»).

But from the definition of the ¢-function it follows that
the number of integers in the array (4) prime to v is ¢(u»).

Hence,
‘ $(uv) = ¢(u) ¢(»),
which is the theorem to be proved.

COROLLARY. In the series of n comsecutive terms of an
arithmetical progression the common difference of which is prime
to n, the number of terms prime to n is ¢(n).

From theorem I we have readily the following more -general

result: .
II. If mi, me, . ..., mx are k positive integers which are

prime each to each, then
d(mime . . . mx)=d(m)p(m2) . . . o(ms).

§ 16. THE INDICATOR OF ANY POSITIVE INTEGER

- From the results of §§14 and 15 we have an immediate
proof of the following fundamental theorem:

If m=p1"p2® . . . pa™ where pi1, P2, . . . , pa are differ-
ent primes and ai, az, . . . , an are positive inlegers, then

e (D)

d(m) = ¢(p1%) 6(p2%) . . . &(4™)
=plcx<1—i>p2%<1—i> - p..""(l —5 '
(i)(3) - (5

For,
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On account of the great importance of this theorem we shall
give a second demonstration of it.
It is clear that the number of integers less than m and

divisible by 2, is
hid
P
The number of integers less than m and divisible by p3 is’
m
23
The number of integers less than m and divisible by 1 is

m_
pipe
Hence the number of integers less than m and divisible by
either p; or p; is
' m.om m

pr P2 prpe

Hence the number of integers less than m and prime to p;ps is
m_m, m _ (o _1\(,_1)
" '172+1’1P2 —m(x P1><I P2>

We shall now show that if the number of integers less than
i and prime to p1p2 . . . pi, where ¢ is less than #, is

")) (3)

then the number of integers less than m and prime to pip:

o o s p«?&l'is B
I I . I
m(=3)(3) - (=5)

From this our theorem will follow at once by induction. . .. :
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From our hypothesis it follows that the number of integers
less than m and divisible by at least one of the primes

n, b, . ee, Puls
m_m(x_i) o (i-2),
b2 4
or . _
m m m
21’1 2?;?2 21’1?2?3 ce ey, 4)
where the summation in each case runs over all numbers of
the type indicated, the subscripts of the p’s being equal to or
less than 7.
Let us consider the -integers less than m and having the
factor p+1 but not having any of the factors g1, p2, . . . , s
Their number is

--’”———‘—[zﬁ—z-l"—-i-z " __ . .}, (B)
Pi+1 P+ 2 D1p2 D1p2p3

where the summation signs have the same significance as before.
For the number in question is evidently m/pe+1 minus the
number of integers not greater than m/pi+1 and divisible by
at least one of the primes 1, p3, . . . , p

If we add (4) and (B) we have the number of integers less

than m and divisible by one at least of the numbers p;, ps,

., pu+1. Hence the number of integers less than m and
prime to i1, P2, . . ., pi+1 s

m—sPyz ™ s " L ..,

p1  pipr  pipaps

where now in the summations the subscripts run from 1 to
i+1. This number is clearly equal to

D05 - (5)
mi——){1——) ... (1——).

( h b2 Pi+1

From this result, as we have seen above, our theorem follows
at once by induction.
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§ 17. SuM oF THE INDICATORS OF THE DIvisors OF A NUMBER

We shall first prove the following lemma:

Lemma. If d is any divisor of m and m=nd, the number
of integers not greater than m which have with m the greatest com-
mon divisor d is ¢(n).

Every integer not greater than m and having the divisor
d is contained in the set d, 2d, 3d, . . . , nd. The number of
these integers which have with m the greatest common divisor
d is evidently the same as the number of integers of the set
1,2, ...,n which are prime to m/d, or n; for ad and m have
or have not the greatest common divisor d according as a is
or is not prime to m/d, =n. Hence the number in question
is ¢(n).

From this lemma follows readily the proof of the following
theorem:

If &, dz, . . . , dy are the different divisors of m, then

o(d)+o(d2)+ . . . +o(dr)=m.

.

Let us define integers m,, ma, . . . , m, by the relations ~
m=dymy=dome= ... =dm,.

Now consider the set of m positive integers not greater than
m, and classify them as follows into r classes. Place in the
first class those integers of the set which have with m the great-
est common divisor m;; their number is ¢(d;), as may be seen
from the lemma. Place in the second class those integers
of the set which have with m the greatest common divisor m3;
their number is ¢(d2). Proceeding in this way throughout,
we place finally in the last class those integers of the set which
have with m the greatest common divisor m,; their number
is ¢(dr). It is evident that every integer in the set falls into
one and into just one of these r classes. Hence the total num-
ber m of integers in the set is ¢(di)+¢(d2)+ . . . +¢(dy).
From this the theorem follows immediately.
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EXERCISES

1. Show that the indicator of any integer greater than 2 is even.

2. Prove that the number of irreducible fractions not greater than 1 and with
denominator equal to n is ¢(n).

3. Prove that the number of irreducible fractions not greater than 1 and
with denominators not greater than » is

(1)) +é(2)+e(3)+ . . . +o(n).

4. Show that the sum of the integers less than » and prime to n is in¢(n)
ifn>1.
5. Find ten valies of # such that ¢(x)=24.

6. Find seventeen values of x such that ¢(x) =72.
7. Find three values of n for which there is no x satisfying the equation

¢(x)=2n.
&. Examine the empirical theorem: If the equation
o(x)=n

has one solution it always has a second solution, # being given and x being the
unknown.
9. Prove that all the solutions of the equation

o(x)=4n—2, n>1,
are of the form p* and 2p*, where p is a prime of the form 4s—1.
10. How many integers prime to n are there in the set

@) 12, 2:3, 3°4,..., nntIi)?
b) 1:2:3, 2-3-4, 3°4'5, ..., nnti)(nt2)?

o X2 23 34 nint1),

2’ 2’ 27 7? 2

1-2:3 2:3°4  3°4'S n(n+1)(n+2)
d) ey, ——————?

6’ 6 6 6
11*. Find a method for determining all the solutions of the equation
$(x)=n,
wh re # is given and x is to be sought.

12* A number theory function ¢(n) is defined for every positive integer #;
and for every such number # it satisfies the relation

() +o(d)+ . . . +é(dr)=n,
where dy, ds, . . . , dy are the divisors of #n. From this property alone show

that
1 1 1
¢(")=”(I-;l> <l—;'> ... (I—;;),

where 1, P2, . . . , pr are the different prime factors of n.



CHAPTER III
ELEMENTARY PROPERTIES OF CONGRUENCES

§ 18. CONGRUENCES MoDULO m

DEFINITIONS. If a and b are any two integers, positive
or zero or negative, whose difference is divisible by m, a and b
are said to be congruent modulo m, or congruent for the modulus
m, or congruent according to the modulus m. Each of the
numbers ¢ and b is said to be a residue of the other.

To express the relation thus defined we may write
a=b+cm,

where ¢ is an integer (positive or zero or negative). It is more
convenient, however, to use a special notation due to Gauss,

and to write
a=b mod m,

an expression which is read a is congruent to b modulo m, or
a is congruent to b for the modulus m, or ¢ is congruent to b
according to the modulus 7. This notation has the advantage
that it involves only the quantities which are essential to the
idea involved, whereas in the preceding expression we had the
irrelevant integer ¢. The Gaussian notation is of great value
and convenience in the stady of the theory of divisibility.
In the present chapter we develop some of the fundamental
elementary properties of congruences. It will be seen that
many theorems concerning equations are likewise true of con-
gruences with fixed modulus; and it is this analogy with equa-
tions which gives congruences (as such) one of their chief claims

to attention.
37
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As immediate consequences of our definitions we have the
following fundamental theorems:

L1If a=cmod m, b=cmodm,
then a=b mod m;

that is, for a given modulus, numbers congruent to the same num-
ber are congruent to each other.

For, by hypothesis, a—c=cim, b—c=cam, where ¢; and
co are integers. Then by subtraction we have a—b=(c1—c2)m;
whence a=b mod m.

II. If a=bmod m, a=pmodm,
then ata=b+p mod m;

that is, congruences with the same modulus may be added or sub-
tracted member by member.

For, by hypothesis, a—b=cim, a—B=cym; whence
(a+a) — (b=£B) =(c1cz)m. Hence ata=>b=+p mod m.

IIL. If a=bmod m,
then ca=cb mod m,

¢ being any integer whatever.
The proof is obvious and need not be stated.

Iv. If a=bmodm, a=fmodm,
then aa=bB mod m;

that is, two congruences with the same modulus may be muitiplied
member by member.

For, we have a =b-+cim,a=8+cem. Multiplying these equa-
tions member by member we have aa="b8-+m(bca+Bc1+cicam).
Hence aa=b8 mod m.

A repeated use of this theorem gives the following result:

V. If a=bmod m,

then a*=b" mod m

where n is any positive inleger.
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As a corollary of theorems II, III and V we have the follow-
ing more general result:

VL. If f(x) demotes anmy polynomial in x with coefficients
which are inlegers (positive or zero or megative) and if further
a=b mod m, then

f(@)=f(b) mod m.

§ 19. SoLuTIONS OF CONGRUENCES BY TRIAL

Let f(x) be any polynomial in x with coefficients which
are integers (positive or negative or zero). Then if x and ¢
are any two integers it follows from the last theorem of the
preceding section that

f(x)=f(x+cm) mod m. ) (1)
Hence if « is any value of x for which the congruence
J@)=omodm " (2) .

is satisfied, then the congruence is also satisfied for x=a+cm,
where ¢ is any integer whatever. The numbers a+cm are
said to form a solution (or to be a roof) of the congruence, c
being a variable integer. Any one of the integers a+cm may
be taken as the representative of the solution. We shall often
speak of ome of these numbers as the solution itself.

Among the integers in a solution of the congruence (2)
there is evidently one which is positive and not greater than
m. Hence all solutions of a congruence of the type (2) may
be found by trial, a substitution of each of the numbers 1, 2,
. . ., m being made for x. It is clear also that m is the maxi-
mum number of solutions which (2) can have whatever be
the function f(x). By means of an example it is easy to show
that this maximum number of solutions is not always possessed
by a congruence; in fact, it is not even necessary that the
congruence have a solution at all.

This is illustrated by the example

#?—3=omod 5.
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In order to show that no solution is possible it is necessary to
make trial only of the values 1, 2, 3, 4, 5 for £. A direct sub-
stitution verifies the conclusion that none of them satisfies
the congruence; and hence that the congruence has no solution
at all. ‘

On the other hand the congruence

x8—x=omod 5

has the solutions x=1, 2, 3, 4, 5 as one‘readily verifies; that
is, this congruence has five solutions—the maximum number
possible in accordance with the results obtained above.

EXERCISES
1. Show that
(a+b)?=a"+b” mod p

where a and b are any integers and p is any prime.

2. From the preceding result prove that
af =a mod p
for every integer a. :

3. Find all the solutions of each of the congruences z!'=x mod 11,
21%9=1 mod 11, %=1 mod 11.

§ 20. PROPERTIES OF CONGRUENCES RELATIVE TO DIVISION

The properties of congruences relative to addition, sub-
traction and multiplication are entirely analogous to the prop-
erties of algebraic equations. But the properties relative to
division are essentially different. These we shall now give.

L If two numbers are comgruent modulo m they are con-
gruent modulo d, where d is any divisor of m. ‘

For, from a=>b mod m, we have a=b+cm=>b+c'd. Hence
a=bmod d.

II. If two mumbers are congruent for different moduli they
are congruent for a modulus which is the least common multiple
of the given moduli,
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The proof is obvious, since the difference of the given num-
bers is divisible by each of the moduli.

A III. When the two members of a congruence are multiples-of
an integer ¢ prime to the modulus, each member of the congruence

may be divided by c. :

- For, if ca=cbmod m then ca—cb is divisible by m. Since

¢ is prime to m it follows that a—b is divisible by m. Hence

a=b mod m.

IV. If the two members of a congruence are divisible by an
integer ¢, having with the modulus the greatest common divisor 8,
ome oblains a congruence equivalent to the given congruence by
dividing the two members by ¢ and the modulus by 3.

By hypothesis

ac=bcmodm, c=éc,, m=éom.

Hence c(a—b) is divisible by m. A necessary and sufficient
condition for this is evidently that ¢;(a—b) is divisible by m;.
This leads at once to the desired result.

§ 21. CONGRUENCES WITH A PRIME MobpuLUs
The congruence *
ax*+a1x" '+ . . . +a,=0omod p, aozkomod p,

where p is a prime number and the a’s are any iniegers, has not
more than n solutions. '

Denote the first member of this congruence by f(x) so that
the congruence may be written

f@=omodp. @
Suppose that a is a root of the congruence, so that

f(@)=o0mod p.
Then we have

f(x) =f(x) —f(a) mod p.

* The sign = is read is not congruent to.




42 THEORY OF NUMBERS :
>N
But, from algebra, f(x) —f(a) is divisible by x—a. Let {z>~a)®
be the highest power of x—a contained in f(x)—f(a). Then
we may write ) -~

f(®)—f(a) = (x—a)1(x), (2)
where f1(x) is evidently a polynomial with integral coefficients.
Hence we have

f(®)=(x—0)%1(z) mod p. (3

We shall say that a occurs a times as a solution of (1); or that
the congruence has a solutions each equal to a.

Now suppose that congruence (1) has a root b such that
bfka mod p. Then from (3) we have

f(6)=(b—a)=f1(b) mod p.
But f(b)=omod p, (b—a)*so mod p.

Hence, since p is a prime number, we must have
f1(b) =0 mod p.

By an é,rgument similar to that .just used above, we may
show that f;(x) —f1(b) may be written in the form

J1(®) =f1(0) = (x—8)%2(=),
where 8 is some positive integer. Then we have
f(x) =(x—a)*(x—b)?f2(x) mod p.

Now this process can be continued until either all the
solutions of (1) are exhausted or the second member is a prod-
uct of linear factors multiplied by the integer ao. In the for-
mer case there will be fewer than #z solutions of (1), so that
our theorem is true for this case. In the other case we have

fl@)=ao(x—a)*(x—0b)? . . . (x—1)* mod p.

We have now 7 solutions of (1): @ counted « times, b counted
B times, . . .,/ counted A times; a+8+ ... +A=mn. -
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Now let n be any solution of (1). Then
S()=ao(n—a)*(»—b)* . . . (n—)*=omod p.

Since p is prime it follows now that some one of the factors
n—a, n=b, . .., n—1I is divisible by p. Hence n coincides
with one of the solutions a, b, ¢, . . . , J. That is, (1) can
have only the n solutions already found.

This completes the proof of the theorem.

EXERCISES
1. Construct a congruence of the form
a®+ax" 4. . . +ag=omodm, aoFEo mod m,

baving more than # solutions and thus show that the limitation to a prime mod-
ulus in the theorem of this section is essential.
2. Prove that
x8—1=(2—1)(s—2)(s~3)(—4) (2—5)(x—6) mod 7

for every integer x.
3. How many solutions has the congruence %=1 mod 11? the congruence
x%=2 mod 11?

§ 22. LINEAR CONGRUENCES

From the theorem of the preceding section it follows that
the congruence

ax=cmod p, assomod p,
where p is a prime number, has not more than one solution.

In this section we shall prove that it always has a solution.
More generally, we shall consider the congruence

ax=cmod m

where m is any integer. The discussion will be broken up
into parts for convenience in the proofs.

1. The congruence
ax=1 mod m, (1)
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in which a and m are relatively prime, has one and only one solu-
tion.

The question as to the existence and number of the solu-
tions ‘of (1) is equivalent to the question as to the existence
and number of integer pairs x, y satisfying the equation,

ax—my=1, (2
the integers x# being incongruent modulo m. Since ¢ and m
are relatively prime it follows from theorem IV of §¢ that
there exists a solution of equation (2). Let t=a and y=g8
be a particular solution of (2) and let x=a and y=8 be any
solution of (2). Then we have

sa—mpB=1,
ga—mB=1;

a(a—a) —m(8—p) =o.
Hence a—a is divisible by m, since a and m are relatively prime.
That is, a=amod m. Hence a and « are representatives of
the same solution of (1). Hence (1) has one and only one
solution, as was to be proved